Math 221: LINEAR ALGEBRA

Chapter 8. Orthogonality §8-6. Singular Value Decomposition

Le Chen¹

Emory University, 2021 Spring

(last updated on 01/25/2021)

Examples

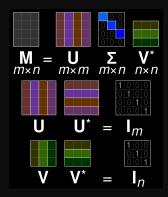
Fundamental Subspaces

Applications

Examples

Fundamental Subspaces

Applications



Definition

Let A be an $m \times n$ matrix. The singular values of A are the square roots of the nonzero eigenvalues of $A^{T}A$. Singular Value Decomposition (SVD) can be thought of as a generalization of orthogonal diagonalization of a symmetric matrix to an arbitrary $m \times n$ matrix. Given an $m \times n$ matrix A, we will see how to express A as a product

 $\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$

where

- \blacktriangleright U is an m \times m orthogonal matrix whose columns are eigenvectors of AA $^{\rm T}.$
- ▶ V is an $n \times n$ orthogonal matrix whose columns are eigenvectors of $A^{T}A$.
- ▶ Σ is an m×n matrix whose only nonzero values lie on its main diagonal, and are the square roots of the eigenvalues of both AA^T and A^TA.

Theorem

If A is an m \times n matrix, then A^TA and AA^T have the same nonzero eigenvalues.

Proof.

Suppose A is an $m \times n$ matrix, and suppose that λ is a nonzero eigenvalue of $A^T A$. Then there exists a nonzero vector $\vec{x} \in \mathbb{R}^n$ such that

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})\vec{\mathbf{x}} = \lambda\vec{\mathbf{x}}.$$
 (1)

Multiplying both sides of this equation by A:

$$\begin{array}{rcl} A(A^{T}A)\vec{x} &=& A\lambda\vec{x}\\ (AA^{T})(A\vec{x}) &=& \lambda(A\vec{x}). \end{array}$$

Since $\lambda \neq 0$ and $\vec{x} \neq \vec{0}_n$, $\lambda \vec{x} \neq \vec{0}_n$, and thus by equation (1), $(A^T A)\vec{x} \neq \vec{0}_n$; thus $A^T(A\vec{x}) \neq \vec{0}_n$, implying that $A\vec{x} \neq \vec{0}_m$.

Therefore $A\vec{x}$ is an eigenvector of AA^{T} corresponding to eigenvalue λ . An analogous argument can be used to show that every nonzero eigenvalue of AA^{T} is an eigenvalue of $A^{T}A$, thus completing the proof.

Examples

Fundamental Subspaces

Applications

Examples

Example

Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
. Then

$$AA^{T} = \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 5 & 11 \end{bmatrix}.$$

$$A^{T}A = \begin{bmatrix} 1 & 3 \\ -1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 2 & 6 \\ 2 & 2 & -2 \\ 6 & -2 & 10 \end{bmatrix}.$$

Since AA^T is 2×2 while A^TA is 3×3 , and AA^T and A^TA have the same nonzero eigenvalues, compute $c_{AA^T}(x)$ (because it's easier to compute than $c_{A^TA}(x)$).

$$\begin{aligned} c_{AA^{T}}(x) &= \det(xI - AA^{T}) = \begin{vmatrix} x - 11 & -5 \\ -5 & x - 11 \end{vmatrix} \\ &= (x - 11)^{2} - 25 \\ &= x^{2} - 22x + 121 - 25 \\ &= x^{2} - 22x + 96 \\ &= (x - 16)(x - 6). \end{aligned}$$

Therefore, the eigenvalues of AA^{T} are $\lambda_1 = 16$ and $\lambda_2 = 6$.

The eigenvalues of $A^T A$ are $\lambda_1 = 16$, $\overline{\lambda_2} = 6$, and $\lambda_3 = 0$, and the singular values of A are $\sigma_1 = \sqrt{16} = 4$ and $\sigma_2 = \sqrt{6}$. By convention, we list the eigenvalues (and corresponding singular values) in nonincreasing order (i.e., from largest to smallest).

To find the matrix V, find eigenvectors for $A^{T}A$. Since the eigenvalues of AA^{T} are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.

$$\begin{split} \lambda_1 &= 16: \text{ solve } (16I - A^T A)\vec{y}_1 = \vec{0}. \\ & \begin{bmatrix} 6 & -2 & -6 & | & 0 \\ -2 & 14 & 2 & | & 0 \\ -6 & 2 & 6 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}, \text{ so } \vec{y}_1 = \begin{bmatrix} t \\ 0 \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, t \in \mathbb{R}. \\ \lambda_2 &= 6: \text{ solve } (6I - A^T A)\vec{y}_2 = \vec{0}. \\ & \begin{bmatrix} -4 & -2 & -6 & | & 0 \\ -2 & 4 & 2 & | & 0 \\ -6 & 2 & -4 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}, \text{ so } \vec{y}_2 = \begin{bmatrix} -s \\ -s \\ s \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, s \in \mathbb{R}. \end{split}$$

$$\begin{split} \lambda_3 &= 0: \text{ solve } (-A^T A) \vec{y}_3 = \vec{0}. \\ & \begin{bmatrix} -10 & -2 & -6 & | & 0 \\ -2 & -2 & 2 & | & 0 \\ -6 & 2 & -10 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}, \text{ so } \vec{y}_3 = \begin{bmatrix} -r \\ 2r \\ r \end{bmatrix} = r \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, r \in \mathbb{R}. \end{split}$$

Let

$$\vec{\mathbf{v}}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \vec{\mathbf{v}}_2 = \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\-1\\1 \end{bmatrix}, \vec{\mathbf{v}}_3 = \frac{1}{\sqrt{6}} \begin{bmatrix} -1\\2\\1 \end{bmatrix}.$$

Then

$$\mathbf{V} = \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{3} & -\sqrt{2} & -1\\ 0 & -\sqrt{2} & 2\\ \sqrt{3} & \sqrt{2} & 1 \end{bmatrix}$$

Also,

$$\Sigma = \left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{array} \right],$$

and we use A, V^{T} , and Σ to find U.

Since V is orthogonal and $A = U\Sigma V^T$, it follows that $AV = U\Sigma$. Let $V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$, and let $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 \end{bmatrix}$, where \vec{u}_1 and \vec{u}_2 are the two columns of U. Then we have

which implies that $A\vec{v}_1 = \sigma_1\vec{u}_1 = 4\vec{u}_1$ and $A\vec{v}_2 = \sigma_2\vec{u}_2 = \sqrt{6}\vec{u}_2$. Thus,

$$\vec{u}_1 = \frac{1}{4}A\vec{v}_1 = \frac{1}{4} \begin{bmatrix} 1 & -1 & 3\\ 3 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} = \frac{1}{4\sqrt{2}} \begin{bmatrix} 4\\ 4 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ 1 \end{bmatrix},$$

and

$$\vec{u}_2 = \frac{1}{\sqrt{6}} A \vec{v}_2 = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & -1 & 3\\ 3 & 1 & 1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} -1\\ -1\\ 1\\ 1 \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3\\ -3 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -1 \end{bmatrix}.$$

Therefore,

$$\mathbf{U} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right],$$

and

$$\begin{aligned} \mathbf{A} &= \begin{bmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{bmatrix} \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{bmatrix} \begin{pmatrix} \frac{1}{\sqrt{6}} \begin{bmatrix} \sqrt{3} & 0 & \sqrt{3} \\ -\sqrt{2} & -\sqrt{2} & \sqrt{2} \\ -1 & 2 & 1 \end{bmatrix} \end{pmatrix}. \end{aligned}$$

Problem

Find an SVD for
$$A = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$
.

Solution

Since A is 3×1 , $A^T A$ is a 1×1 matrix whose eigenvalues are easier to find than the eigenvalues of the 3×3 matrix AA^T .

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \end{bmatrix}.$$

Thus $A^{T}A$ has eigenvalue $\lambda_{1} = 9$, and the eigenvalues of AA^{T} are $\lambda_{1} = 9$, $\lambda_{2} = 0$, and $\lambda_{3} = 0$. Furthermore, A has only one singular value, $\sigma_{1} = 3$.

To find the matrix V, find an eigenvector for $A^T A$ and normalize it. In this case, finding a unit eigenvector is trivial: $\vec{v}_1 = \begin{bmatrix} 1 \end{bmatrix}$, and

$$\mathbf{V} = \left[\begin{array}{c} 1 \end{array} \right].$$

Solution (continued)

Also,
$$\Sigma = \begin{bmatrix} 3\\0\\0 \end{bmatrix}$$
, and we use A, V^T, and Σ to find U.

Now $AV = U\Sigma$, with $V = \begin{bmatrix} \vec{v}_1 \end{bmatrix}$, and $U = \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \vec{u}_3 \end{bmatrix}$, where \vec{u}_1, \vec{u}_2 , and \vec{u}_3 are the columns of U. Thus

This gives us $A\vec{v}_1 = \sigma_1\vec{u}_1 = 3\vec{u}_1$, so

$$\vec{\mathbf{u}}_1 = \frac{1}{3} \mathbf{A} \vec{\mathbf{v}}_1 = \frac{1}{3} \begin{bmatrix} -1\\2\\2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1\\2\\2 \end{bmatrix}.$$

Solution (continued)

The vectors \vec{u}_2 and \vec{u}_3 are eigenvectors of AA^T corresponding to the eigenvalue $\lambda_2 = \lambda_3 = 0$. Instead of solving the system $(0I - AA^T)\vec{x} = \vec{0}$ and then using the Gram-Schmidt orthogonalization algorithm on the resulting set of two basic eigenvectors, the following approach may be used.

Find vectors \vec{u}_2 and \vec{u}_3 by first extending $\{\vec{u}_1\}$ to a basis of \mathbb{R}^3 , then using the Gram-Schmidt algorithm to orthogonalize the basis, and finally normalizing the vectors.

Starting with $\{3\vec{u}_1\}$ instead of $\{\vec{u}_1\}$ makes the arithmetic a bit easier. It is easy to verify that

$$\left\{ \left[\begin{array}{c} -1\\ 2\\ 2 \end{array} \right], \left[\begin{array}{c} 1\\ 0\\ 0 \end{array} \right], \left[\begin{array}{c} 0\\ 1\\ 0 \end{array} \right] \right\}$$

is a basis of \mathbb{R}^3 . Set

$$\vec{f}_1 = \left[\begin{array}{c} -1 \\ 2 \\ 2 \end{array} \right], \vec{x}_2 = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], \vec{x}_3 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right],$$

and apply the Gram-Schmidt orthogonalization algorithm to $\{\vec{f}_1, \vec{x}_2, \vec{x}_3\}$.

Solution (continued)

This gives us

$$\vec{\mathbf{f}}_2 = \begin{bmatrix} 4\\1\\1 \end{bmatrix}$$
 and $\vec{\mathbf{f}}_3 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$.

Therefore,

$$\vec{\mathbf{u}}_2 = \frac{1}{\sqrt{18}} \begin{bmatrix} 4\\1\\1 \end{bmatrix}, \vec{\mathbf{u}}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1\\-1 \end{bmatrix},$$

and

$$\mathbf{U} = \begin{bmatrix} -\frac{1}{3} & \frac{4}{\sqrt{18}} & 0\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}}\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}} \end{bmatrix}.$$

Finally,

$$\mathbf{A} = \begin{bmatrix} -1\\ 2\\ 2\\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} & \frac{4}{\sqrt{18}} & 0\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & \frac{1}{\sqrt{2}}\\ \frac{2}{3} & \frac{1}{\sqrt{18}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix} \begin{bmatrix} 1\\ \end{bmatrix}.$$

Problem

Find a singular value decomposition of
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}$$
.

Solution

$$\begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix} = \left(\frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}\right) \begin{bmatrix} \sqrt{85} & 0 \\ 0 & 0 \end{bmatrix} \left(\frac{1}{\sqrt{17}} \begin{bmatrix} 1 & -4 \\ 4 & 1 \end{bmatrix}\right).$$

Remark

Since there is only one non-zero eigenvalue, \vec{u}_2 (the second column of U) can not be found using the formula $\vec{u}_2 = \frac{1}{\sigma_2} A \vec{v}_2$. However, \vec{u}_2 can be chosen to be any unit vector orthogonal to \vec{u}_1 ; in this case, $\vec{u}_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2\\ 1 \end{bmatrix}$.

Problem

Find a singular value decomposition of $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$.

Solution

$$\begin{bmatrix}
-1 & 1 & 0 \\
0 & -1 & 1
\end{bmatrix}$$

$$\parallel$$

$$\begin{pmatrix}
\frac{1}{\sqrt{2}} \begin{bmatrix}
-1 & 1 \\
1 & 1
\end{bmatrix}
)
\begin{bmatrix}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{pmatrix}
\frac{1}{\sqrt{6}} \begin{bmatrix}
1 & -2 & 1 \\
-\sqrt{3} & 0 & \sqrt{3} \\
\sqrt{2} & \sqrt{2} & \sqrt{2}
\end{bmatrix}$$

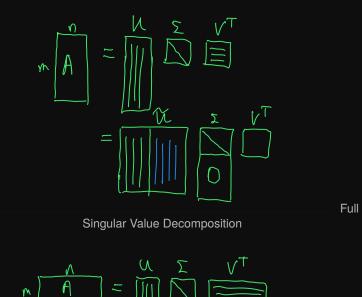
Examples

Fundamental Subspaces

Applications

Fundamental Subspaces

Full Singular Value Decomposition



Examples

Fundamental Subspaces

Applications

Applications

Example (Polar Decomposition)

$$a + bi = \underbrace{\sqrt{a^2 + b^2}}_{radius} \underbrace{e^{i\theta}}_{rotation}.$$

Similarly, any square matrix

$$\mathbf{A} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathrm{T}} = \underbrace{\mathbf{U}\boldsymbol{\Sigma}\mathbf{U}^{\mathrm{T}}}_{\mathbf{U}\mathbf{V}^{\mathrm{T}}} \underbrace{\mathbf{U}\mathbf{V}^{\mathrm{T}}}_{\mathbf{U}\mathbf{V}^{\mathrm{T}}}$$

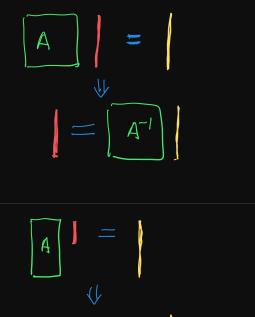
nonneg. def. rotation

Definition

A real $n \times n$ matrix G is nonnegative definite (or positive in the book) if it is symmetric and for all $\vec{x} \in \mathbb{R}^n$

$$\vec{x}^{\mathrm{T}} G \vec{x} \ge 0.$$

Example (Generalized inverse)



Example (Image of unit ball under linear transform A)

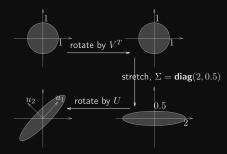
Let $A = U\Sigma V^{T}$ be the full SVD for an $m \times n$ matrix A. We will see how the unit ball will be mapped:

$$\{A\vec{x} \mid ||\vec{x}|| \le 1\}$$

The linear map $\vec{y} = A\vec{x}$ is trying to do the following things:

- 1. Rotate the n-vector \vec{x} by V^T
- 2. Stretch along axes by σ_i with $\sigma_i = 0$ for i > rank (A)
- 3. Zero-pad for tall matrix (i.e., m>n) or truncate for fat matrix (i.e., m<n>) to get m-vector
- 4. Rotate the m-vector by U^{T}

Example (Image of unit ball under linear transform A – continued)



Example (Image Compression)

Image is a A is a 300×300 matrix.

